APPENDIX A. TECHNICAL SUPPLEMENT



NAME

sedpak - Execute Sedpak




SYNOPSIS

sedpak -h
sedpak
sedpak exec [Xt-opts]
sedpak edit [Xt-opts]
sedpak facies [Xt-opts]
sedpak sim [Xt-opts] -input filename [simoptions]
sedpak overlay [Xt-opts] [giffile] [surfile]
sedpak help [Xt-opts]
sedpak SedpakToAdobe filename
sedpak error [Xt-opts]

NOTE:: Standard X application parameters such as -geometry
can be specified for individual programs only.
For example:

sedpak exec -geom +0+0




DESCRIPTION

Sedpak -h invokes the Unix man page for sedpak.
Sedpak invokes the integrated version of the sedpak program. The Sedpak Launch menu allows execution of the various applications within the sedpak system.
Sedpak exec invokes the Sedpak Exec menu and simulation window. The menu allows files to be loaded for interactive execution of the simulation.
Sedpak edit invokes the Sedpak Edit menu. The menu allows data files for the simulation to be created and modified.
Sedpak facies invokes the facies file editor. Facies files may be defined or modified for use with one or more data files.
Sedpak sim causes the simulation program to be executed as a standalone application with filename as its data file. Unlike with sedpak exec, there is no interactive control over the simulation.
Sedpak overlay allows the stratigraphic cross sections produced by the simulation to be graphically overlaid upon an image file containing a stratigraphic cross section or seismic line.
Sedpak help invokes the interactive help system. The system replicates most of the information available in the Sedpak Manual. Sedpak help also can be invoked from the Sedpak Edit and Sedpak Exec menus.
Sedpak SedpakToAdobe filename converts filename from the Postscript format produced by the sedpak simulation into a format which can be read by Adobe Illustrator. The new file is named filename.adobe. Filename must be produced by the Print selection _ To file option of the File pulldown menu from the Sedpak Exec menu.
Sedpak error uses the Sedpak user interface to report a problem to the sedpak programming team via e-mail.




OPTIONS


Examples

sedpak exec
sedpak sim -input vail.db
sedpak sim -input Bahamas07.db -plot -all -sur Bahamas07
sedpak sim -input Bahamas07.db -plot boundaries -pwell
sedpak overlay
sedpak SedpakToAdobe Bahamas07.ps
sedpak -help

Table of Contents




A.01 Format for a SEDPAK input file (.db)

The sedpak .db format is a semi-freeform arrangement of keywords and data. The file must begin with a single line containing the string (SedpakDataFile). Data entries consist of an opening keyword line, a body of variable format data, and a closing marker. The keyword line is of the form "keyword" with keyword being one of those listed below. The format of the body of the data section varies according to the keyword. The closing line is always a line with a single closing parenthesis. There is no expected order for keywords. Table A.1.1 presents the keywords for the file, their data type and a description of their usage. Tables A.1.2, A.1.3, and A.1.4 present the keywords and formats for the different data types used within SEDPAK. Section A.2 is an example of a SEDPAK input file.




KeywordTypeDescription
SPdb_basin Type 1See Table A.1.2
SPdb_basinSpanType 3See Table A.1.3
SPdb_carbAng realCarbonate repose angle
SPdb_carbRate Type 1See Table A.1.2
SPdb_carbSwitchkeywordyes | no
SPdb_compactSwitch keywordyes | no
SPdb_dampExp realDamping exponent
SPdb_deep Type 3See Table A.1.3
SPdb_density Type 3See Table A.1.3
SPdb_depAngType 1See Table A.1.2
SPdb_direction keywordleft | right | both | neither
SPdb_erosion Type 3See Table A.1.3
SPdb_erosionDamp realErosional damping
SPdb_faciesspecial faciesSee Table A.1.6
SPdb_filenametextname of the .db file
SPdb_hardground Type 1See Table A.1.2
SPdb_hardSwitchkeywordyes | no
SPdb_isoExp realIsostacy coefficient
SPdb_kin_a_energyrealKinetic activation energy
SPdb_kin_exp_coeffrealKinetic exponetial coefficient
SPdb_lagoonDamp Type 1See Table A.1.2
SPdb_lagoonSwitchkeywordyes | no
SPdb_lastBurial realFinal burial depth
SPdb_log textvariable length text
SPdb_manDensity realMantle density
SPdb_numCol integerNumber of columns
SPdb_opdepspecial opdepSee Table A.1.5
SPdb_pelRateType 1See Table A.1.2
SPdb_pelSwitch keywordyes | no
SPdb_penetrate Type 1See Table A.1.2
SPdb_percNear realPercent Talus
SPdb_percSea realPercent of Carbonates to Sea
SPdb_plot Type 3See Table A.1.3
SPdb_plotBottomrealbottom of basin to be displayed
SPdb_plotToprealtop of basin to be displayed
SPdb_pwellspecial pwellSee Table A.1.4
SPdb_sealevel Type 1See Table A.1.2
SPdb_seaOffset realSealevel offset
SPdb_sedloadSwitchkeywordyes | no
SPdb_shallow Type 3See Table A.1.3
SPdb_steps integerNumber of time steps
SPdb_sub Type 3See Table A.1.3
SPdb_subsidence Type 1See Table A.1.2
SPdb_subsSwitchkeywordyes | no
SPdb_surfaceTempType 1See Table A.1.2
SPdb_talusDist realTalus distance
SPdb_temp_lnvaluerealValue for which a temperature line will be printed
SPdb_thermalGradType 1See Table A.1.2
SPdb_timeSpan Type 3See Table A.1.3
SPdb_transDepth realTransition depth
SPdb_turbDist realTurbidite Distance
SPdb_units keywordmetric | english
SPdb_version magic cookiefixed string=(sedpakXX)
SPdb_volume Type 1See Table A.1.2
SPdb_waveDepth realWave Base
SPdb_wavedSwitchkeywordyes | no
SPdb_waveL Type 1See Table A.1.2
SPdb_waveR Type 1See Table A.1.2
SPdb_winnowL Type 1See Table A.1.2
SPdb_winnowRType 1See Table A.1.2
SPdb_winnSwitchkeywordyes | no


Table A.1.1. Keywords, types, and descriptors for the .db file format.







KeywordTagTag UnitsPairsPair Units
SPdb_basinAge-MYBPDistance
Depth
km|mi
m|ft
SPdb_carbRateAge -MYBPDepth
Rate
m|ft
m|ft/Ka
SPdb_hardgroundCurve IDNASea Level Change-
Percent Realized
m|ft
%
SPdb_lagoonDampCurve IDNADistance
Damping
km|mi
%
SPdb_pelRate Curve IDNATime
Rate
-MYBP m|ft/Ka
SPdb_penetrate0 => sand leftNATime
Distance
-MYBP
km|mi
SPdb_penetrate1 => shale leftNATime
Distance
-MYBP
km|mi
SPdb_penetrate3 => sand rightNATime
Distance
-MYBP
km|mi
SPdb_penetrate4 => shale rightNATime
Distance
-MYBP
km|mi
SPdb_sealevelCurve IDNATime
Depth
-MYBP
m|ft
SPdb_subsidenceLocationkm|miTime
Rate
-MYBP m|ft/Ka
SPdb_volume 0 => sand leftNATime
Amount
-MYBP
km2|mi2/Ka
SPdb_volume 1 => shale leftNATime
Amount
-MYBP
km2|mi2/Ka
SPdb_volume 3 => sand rightNATime
Amount
-MYBP
km2|mi2/Ka
SPdb_volume 4 => shale rightNATime
Amount
-MYBP
km2|mi2/Ka
SPdb_waveLLocationkm|miDepth
Rate
km|mi
%
SPdb_waveRLocationkm|miDepth
Rate
km|mi
%
SPdb_winnowLLocationkm|miDepth
Percent
km|mi
%
SPdb_winnowRLocationkm|miDepth
Percent
km|mi
%


Table A.1.2. Keywords and format for Type 1 data.





KeywordVariablesUnits
SPdb_basinSpanLeftBasin-RightBasinkm|mi-km|mi
SPdb_deep Deep depositional angledegrees
angle2Future use
angle3Future use
SPdb_densitysandDensityg/cc
shaleDensityg/cc
carbDensityg/cc
SPdb_erosionAlluvial angle of reposedegrees
angle2Future use
angle3Future use
SPdb_plotplotTime 1-MYBP
plotTime 2-MYBP
plotTime n-MYBP
SPdb_plotScaleTop of plot-Bottom of plotmi/km-mi/km
SPdb_shallowShallow depositional angledegrees
angle2Future use
angle3Future use
SPdb_subSubmarine angle of reposedegrees
angle2Future use
angle3Future use
SPdb_timeSpanBeginTime-EndTimeMYBP-MYBP


Table A.1.3. Keywords and format for Type 3 data.





Keywordlabeldistdispwelldisplabeldepth
SPdb_pwellchar*realintegerintegerreal
label on wellwell location0=>no well display
1=>well display
0=>no display label
1=>display label
depth at which to display label


Table A.1.4. Keyword and format for Pseudo-Wells.





Keywordagecol_
num
dist_
array
shale_
offset_
array
sand_
offset_
array
carb_
offset_
array
base_
array
SPdb_opdeprealintegerreal*real*real*real*real*
basin surface agenum cols this surfdistances 0 to col_numshale offset 0 to col_numsand offset 0 to col_numcarb offset 0 to col_numbase of the layer


Table A.1.5. Keyword and format for Out-of-Plane Deposition.



Keywordranktitlecoloridxdef
SPdb_faciesintegerchar[20]integerSPdb_FRF
orderingtitle stringfacies color indextype array


Table A.1.6. Keyword and format for Facies.

Table of Contents




A.02 Sample SEDPAK input file





Table of Contents


A.03 Format for a SEDPAK surface file (.sur)

The surface file is an ASCII file. The first line gives time, position, and resolution information. The second line indicates the time steps at which sequences were defined, and the third line indicates the time step at which this snapshot was taken. The remainder of the file contains elevations for each column of each surface.

Time and position information can be derived from the first line of the file (number of time steps, start time, end time, number of columns, left basin position, right basin position) and the first line of each surface dump (time step).



line 1Number of Time StepsStart TimeStop TimeNumber of X-StepsX-Axis LeftX-Axis Right
integerrealrealintegerrealreal

line 2time steps representing sequences
integers
line 3time step for which the file was created
integer
line 4"Basin Surface" at time step indicated on line 3 (real)
line 5shale deposited at time step 1 after number of time steps indicated on line 3 (real)
line 6sand deposited at time step 1 after number of time steps indicated on line 3 (real)
line 7carbonate deposited at time step 1 after number of time steps indicated on line 3 (real)
line 8shale deposited at time step 2 after number of time steps indicated on line 3 (real)
line 9sand deposited at time step 2 after number of time steps indicated on line 3 (real)
line 10carbonate deposited at time step 2 after number of time steps indicated on line 3 (real)

The number of lines beginning with line 4 will be 1+3s, where s is the time step indicated on line 3. The number of entries on each row will be the number of X-steps, as shown on line 1.


Table A.3.1. Format for the SEDPAK surface file.



Table of Contents


A.04 Sample SEDPAK surface file

1010.0000000.000000200.00000020.000000
1610
10
0.000000-513.958496-1029.960693-1029.713257-1029.458618_
0.000000-513.958496-1029.960693-1029.713257-1029.458618_
0.000000-513.958496-933.558838-935.123352-935.697144_
0.000000-513.958496-933.558838-935.123352-935.697144_
0.000000-513.958496-933.558838-935.123352-935.697144_
0.000000-513.958496-837.463257-838.956604-840.381226_
0.000000-513.958496-837.463257-838.956604-840.381226_
0.000000-513.958496-837.463257-838.956604-840.381226_
0.000000-513.958496-739.730591-741.127075-743.427246_
0.000000-513.958496-739.730591-741.127075-743.427246_
0.000000-513.958496-739.730591-741.127075-743.427246_
0.000000-513.958496-641.691284-643.978760-647.331055_
0.000000-513.958496-641.691284-643.978760-647.331055_
0.000000-513.958496-641.691284-643.978760-647.331055_
0.000000-513.958496-544.516113-547.849976-551.197144_
0.000000-513.958496-544.516113-547.849976-551.197144_
0.000000-513.958496-544.516113-547.849976-551.197144_
0.000000-437.739594-448.355286-451.715240-456.567352_
0.000000-437.739594-448.355286-451.715240-456.567352_
0.000000-437.739594-448.355286-451.715240-456.567352_
0.000000-342.265381-352.218811-357.040375-362.293060_
0.000000-342.265381-352.218811-357.040375-362.293060_
0.000000-342.265381-352.218811-357.040375-362.293060_
0.000000-246.168930-257.500031-262.752716-268.838226_
0.000000-246.168930-257.500031-262.752716-268.838226_
0.000000-246.168930-257.500031-262.752716-268.838226_
0.000000-151.914749-163.082840-169.148987-176.237427_
0.000000-151.914749-163.082840-169.148987-176.237427_
0.000000-151.914749-163.082840-169.148987-176.237427_
0.000000-59.560062-69.330582-76.369316-83.598854_
0.000000-59.560062-69.330582-76.369316-83.598854_




Table of Contents


A.05 Format for a SEDPAK solidity file (.sol)

The solidity file is an ASCII file. The first line gives time, position, and resolution information. The second line indicates the time steps at which sequences were defined, and the third line indicates the time step at which this solidity snapshot was taken. The remainder of the file contains solidities for each column of each surface.

Time and position information can be derived from the first line of the file (number of time steps, start time, end time, number of columns, left basin position, right basin position).



line 1Number of Time StepsStart TimeStop TimeNumber of X-StepsX-Axis LeftX-Axis Right
integerrealrealintegerrealreal

line 2time steps representing sequences
integers
line 3time step for which the file was created
integer
line 4shale solidity at time step 1 after number of time steps indicated on line 3 (real)
line 5sand solidity at time step 1 after number of time steps indicated on line 3 (real)
line 6carbonate solidity at time step 1 after number of time steps indicated on line 3 (real)
line 7shale solidity at time step 2 after number of time steps indicated on line 3 (real)
line 8sand solidity at time step 2 after number of time steps indicated on line 3 (real)
line 9carbonate solidity at time step 2 after number of time steps indicated on line 3 (real)

The number of lines beginning at line 4 will be 3s, where s is the time step indicated on line 3. The number of entries on each row will be the number of X-Steps, as shown on line 1.

Table A.5.1. Format for the SEDPAK solidity file.



Table of Contents


A.06 Sample SEDPAK solidity file

1010.0000000.000000200.00000020.000000
1610
5
0.0000000.4528810.4536450.4558320.456547_
0.0000000.5147130.5150090.5140620.514164_
0.0000000.0000000.0000000.0000000.000000_
0.0000000.4527780.4537570.4546850.455832_
0.0000000.5138490.5139320.5140040.514062_
0.0000000.0000000.0000000.0000000.000000_
0.0000000.4523840.4535780.4549500.455902_
0.0000000.5141180.5142350.5143400.514427_
0.0000000.0000000.0000000.0000000.000000_
0.0000000.4541920.4558460.4570440.458446_
0.0000000.5151690.5152620.5154250.515529_
0.0000000.0000000.0000000.0000000.000000_
0.0000000.4467920.4487040.4507990.452381_
0.0000000.5147640.5148970.5150420.515151_
0.0000000.0000000.0000000.0000000.000000_



Table of Contents


A.07 Format for a SEDPAK layer thickness file (.thick)

The layer thickness file is an ASCII file. The first line gives time, position, and resolution information. The second line indicates the time steps at which sequences were defined and the third line indicates the corresponding ages for these sequences. The fourth line indicates the time step and corresponding age at which the layer thickness snapshot was taken. The remainder of the file contains the thickness of each layer at each pseudo well defined. The start of each pseudo well is indicated by its distance, column position and well name. The lines following the identifier contain the time step and corresponding age, followed by the total thickness of the layer, and the thickness of the shale, sand and carbonate components of the layer.


line 1Number of Time StepsStart TimeStop TimeNumber of X-StepsX-Axis LeftX-Axis Right
integerrealrealintegerrealreal

line 2time steps representing sequences
integers
line 3ages representing sequences
reals

line 4time step for which the file was createdage for which the file was created
integerreal

line 5pseudo well distancepseudo well column positionpseudo well name
realintegerchar

line 6time stepage of time steptotal thickness of layershale thickness within layersand thickness within layercarbonate thickness within layer
integerrealrealrealrealreal

Each line thereafter represents a time step and the thickness information at that time step. Line 5, followed by a line for each time step, is repeated for each pseudo well defined.


Table A.7.1. Format for the SEDPAK layer thickness file.



Table of Contents


A.08 Sample SEDPAK layer thickness file

5020.0000000.0000001010.000000400.000000
61621374350
-17.60-13.60-11.60-5.20-2.800.00
10-16.00
200.0050well one
1-19.606.645.001.640.00
2-19.207.835.981.850.00
3-18.808.916.951.970.00
4-18.4010.688.542.140.00
5-18.000.000.000.000.00
6-17.600.000.000.000.00
7-17.200.000.000.000.00
8-16.800.000.000.000.00
9-16.400.000.000.000.00
10-16.000.000.000.000.00
300.0075well two
1-19.602.432.120.320.00
2-19.203.192.700.490.00
3-18.803.793.190.600.00
4-18.404.643.880.760.00
5-18.006.655.431.210.00
6-17.606.475.281.190.00
7-17.200.000.000.000.00
8-16.800.000.000.000.00
9-16.402.261.770.500.00
10-16.003.833.040.790.00


Table of Contents


9. REFERENCES

Aigner, T., M., Doyle, and D. T., Lawrence, 1987, Isostatic Controls on Carbonate Platform Development: American Association of Petroleum Geologists Bulletin, v. 71, p. 524.

Aigner, T., M. Doyle, and D. T. Lawrence, M. Epting, A. Van Vliet, 1989, Quantitative Modeling of Carbonate Platforms: Some Examples; in P. D. Crevello, J. L. Wilson, J.F. Sarg, and J. F. Read, eds., Controls on carbonate platform and basin development, Society of Economic Paleontologists and Mineralogists Special Publication, v. 44, p. 27-37.

Armentrout, J. M., L. S. Rouch, and S. A. Bowman, 1994, Computer simulation of seismically-defined depositional sequences: Pliocene and Pleistocene geometry's and rates, offshore Texas (Abst.): Program of the Annual Meeting of the American Association of Petroleum Geologists, v. 3, p. 95.

Baldwin, B. and C. O. Butler, 1985, Compaction Curves: American Association Petroleum Geologists Bulletin, v. 69, p. 622-626.

Borer, J. M. and P. M. Harris, 1991, Lithofacies and cyclicity of the Yates Formation, Permian Basin: Implications for reservoir heterogeneity: AAPG Bulletin, v. 75, p. 726-779.

Bowman, S. A., 1993, Carbonate Sedimentation Processes in PHIL: Program of the Annual Meeting of the American Association of Petroleum Geologists, p. 78.

Burton, R., C. G. St. C Kendall, and I. Lerche, 1987, Out of our depth: on the impossibility of fathoming eustasy from the stratigraphic record: Earth Science Reviews, v. 24, p. 237-277.

Colquhoun, D. J., 1990, Surface and Subsurface Formations, Structure and Groundwater Aquifers of the South Carolina Coastal Plain: Dept. of Geology, University of South Carolina, Columbia, South Carolina, 81p.

Eberli, Gregor P., C. G. St. C. Kendall , P. Moore, G. L. Whittle, and R. Cannon, 1994, Testing a Seismic Interpretation of Great Bahama Bank with a Computer Simulation, AAPG Bulletin, v. 78, p. 981-1004.

Frohlich, C., and R. K. Matthews, 1991, Strata-Various: a flexible Fortran program for dynamic foreward modeling of stratigraphic: in Franseen, E. K., Watney, W. L., Kendall, C. G. St. C., Ross, W., eds., Sedimentary Modeling: Computer Simulations and Methods for Improved Parameter Definition, Kansas Geological Survey Bull. 233, p. 449-461.

Guidish, T. M., I. Lerche, C. G. St. C. Kendall, and J. J. O'Brien, 1984. Relationship between Eustatic Sea level changes and basement subsidence: American Association Petroleum Geologists Bulletin, v. 68, p. 164-177.

Harris, P. M., and J. M. Borer, 1992, High-frequency stratigraphy - An example from the U. S. Permian Basin: SEPM/IAS Research Conference, Carbonate stratigraphic sequences, Abstract Volume and Conference Program, p. 53-55.

Haq, B., J. Hardenbol, and P.R. Vail, 1987, Chronology of fluctuating sea levels since the Triassic (250 million years to present): Science, no. 235, p. 1156-1167.

Jervey, M.T., 1989, Quantitative Geological Modelling of Siliciclastic Rock Sequences and their Seismic Expression, in C.K. Wilgus, B. Hastings, C.G.St.C. Kendall, H. Posamentier, C. Ross, and J.C. Van Wagoner, eds., Sea-Level changes - An integrated approach: SEPM Special Pub. 42, p. 47-70.

Kendall, C. G. St. C., and I. Lerche, 1989, The Rise and Fall of Eustasy, in C.K. Wilgus, B. Hastings, C.G.St.C. Kendall, H. Posamentier, C. Ross, and J.C. Van Wagoner, eds., Sea-Level changes - An integrated approach: SEPM Special Pub. 42, p. 3-18.

Lawerence, D. T., M. Doyle, and T. Aigner, 1989, Calibration of Stratigraphic Models in Exploration Settings: American Association of Petroleum Geologists Bulletin, v. 73, n. 3, p. 379-380.

Lawrence, D. T., M. Doyle, and T. Aigner, 1990, Stratigraphic Simulation of Sedimentary Basins: Concepts and Calibrations: American Association of Petroleum Geologists Bulletin, v. 74, p. 273-295.

Lawrence, D. T., M. Doyle, and T. Aigner, 1990, Stratigraphic simulation of sedimentary basins: concepts and calibrations: AAPG Bulletin, v. 74, p. 273-295.

Lessenger, M. A., 1992, Two-dimensional stratigraphic simulation model...(Abst.): AAPG Annual Convention Program, p. 74-75.

Lorenz, J. C., and S.J. Finley, 1991, Fracturing of Mesaverde Reservoirs in the Piceance Basin, Colorado: American Association Petroleum Geologists Bulletin, v. 75, p. 1738-1757.

Pauling, L., and P. Pauling, 1975, Chemistry, San Francisco, p. 327.

Posamentier, H. W., M. T. Jervey, and P. R. Vail, 1988, Eustatic Controls on Clastic Deposition I- Conceptual Framework: in Sea- Level Changes: An Integrated Approach, Wilgus, C. K., Hastings, B., Kendall, C. G. St. C., Posamentier, H., Ross, C., Van Wagoner, J. C., eds., Society of Economic Paleontologists and Mineralogists, Special Publication 42, p. 109-124.

Posamentier, H. W., and P. R. Vail, 1988, Eustatic Controls on Clastic Deposition II - Sequence and Systems Tract Models: in Sea- Level Changes, an integrated approach: An Integrated Approach, Wilgus, C. K., Hastings, B., Kendall, C. G. St. C., Posamentier, H., Ross, C., Van Wagoner, J. C., eds., Society of Economic Paleontologists and Mineralogists, Special Publication 42, p. 125-154.

Rankey, E. C., and W. L. Watney, 1994, Data_Sim: A relational database for analysis of stratigraphic/sedimentologic computer models (abst.): Program of the Annual Meeting of the American Association of Petroleum Geologists, v. 3, p. 241.
Ross, W. C., B. A. Halliwell, J. A. May, and D. E. Watts, 1994, Integrated Sequence Stratigraphic Analysis: An Example from the Mesozoic/Cenozoic of Australia, Program of the Annual Meeting of the American Association of Petroleum Geologists, v. 3, p. 246.

Ross, W. C., et al., 1994, Slope readjustment: A new model for the development of submarine fans and aprons: Geology, v. 22, p. 511-514.

Ross, W. C., 1989, Modeling relative base level surfaces, in T.A. Cross, ed., Quantative Dynamic Stratigraphy: p. 387-400.

Ross, W. C., and J. R. P. Ross, 1988, Late Paleozoic Transgressive -Regressive Deposition, in C.K. Wilgus, B. Hastings, C.G.St.C. Kendall, H. Posamentier, C. Ross, and J.C. Van Wagoner, eds., Sea-Level changes - An integrated approach: SEPM Special Pub. 42, p. 227-248.

Scaturo D. M., J.S. Strobel, C.G.St.C. Kendall, J.C. Wendte, G. Biswas, J. Bezdek, and R. Cannon, 1989, Judy Creek: a case study of a two dimensional sediment deposition simulation, in J.L. Wilson, P.Crevello and Read F., Controls on Carbonate Platform and Basin Development: SEPM Special Pub. 44, p. 64-76.

Schlager, W., 1994, Accomodation and supply - A dual control on stratigraphic sequences: preprint.

Steckler, M. S., 1990, The role of thermal-mechanical structure of the lithosphere in the formation of sedimentary basins, in T. A. Cross, ed., Quantitative dynamic stratigraphy: Prentice Hall, Englewood Cliffs, NJ, p. 89-112.

Steckler, M. S., and A. B. Watts, 1978, Subsidence of the Atlantic-type continental margin off New York: Earth and Planetary Science Letters, v. 42, p. 1-13.

Stephenson, R., 1990, Beyond first-order thermal subsidence models for sedimentary basins?, in T. A. Cross, ed., Quantitative dynamic stratigraphy: Prentice Hall, Englewood Cliffs, NJ, p. 113-126.

Strobel, J., R. Cannon, C.G.St.C. Kendall, G. Biswas, and J. Bezdek, 1989, Interactive (SEDPAK) Simulation Of Clastic And Carbonate Sediments In Shelf To Basin Settings: Computers and Geoscience v. 15, p. 1279-1290.

Strobel, J., F. Soewito, C.G.St.C. Kendall, G. Biswas, J. Bezdek, and R. Cannon, 1989, Interactive Simulation (SED-pak) of Clastic and Carbonate Sediments In Shelf To Basin Settings, in T.A. Cross, ed., Quantative Dynamic Stratigraphy: p. 433-444.

Tissot, B.P., and Welte, D.H., 1978. Petroleum formation and occurence: A new approach to oil and gas exploration. Springer-Verlag, new York, 538p.

Vail, P. R., R. M. Mitchum Jr., R. G. Todd, J. M. Widmier, S. Thompson III, J. B. Sangree, J. N. Bubb, and W. G. Hatlelid, 1977, Seismic stratigraphy and global changes of sea level. in C.E. Payton, ed., Seismic Stratigraphy - Applications to hydrocarbon exploration: American Association Petroleum Geologists Mem. 26, p. 49-212.

Van Wagner, J. C., R. M. Mitchum, H. W. Posamentier, and P. R. Vail, 1987, Key Definitions of Seismic Stratigraphy: American Association Petroleum Geologists Atlas of Seismic Stratigraphy, v. 1, p. 11-14.

eds., Advances in petroleum geochemistry. Academic Press, p.7-67.

Watts, D. E., W. C. Ross, J. A. May, and C. Greenberg, 1994, Data constrained stratigraphic modeling (Abst.): AAPG Annual Convention Program, p. 279.

Table of Contents